Structured Inference Networks for Nonlinear State Space Models

نویسندگان

  • Rahul G. Krishnan
  • Uri Shalit
  • David Sontag
چکیده

Gaussian state space models have been used for decades as generative models of sequential data. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption. We introduce a unified algorithm to efficiently learn a broad class of linear and non-linear state space models, including variants where the emission and transition distributions are modeled by deep neural networks. Our learning algorithm simultaneously learns a compiled inference network and the generative model, leveraging a structured variational approximation parameterized by recurrent neural networks to mimic the posterior distribution. We apply the learning algorithm to both synthetic and real-world datasets, demonstrating its scalability and versatility. We find that using the structured approximation to the posterior results in models with significantly higher held-out likelihood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Variational inference of latent state sequences using Recurrent Networks

Recent advances in the estimation of deep directed graphical models and recurrent networks let us contribute to the removal of a blind spot in the area of probabilistc modelling of time series. The proposed methods i) can infer distributed latent state-space trajectories with nonlinear transitions, ii) scale to large data sets thanks to the use of a stochastic objective and fast, approximate in...

متن کامل

Efficient Structured Inference for Stochastic Recurrent Neural Networks

Recent advances in sequential data modeling have suggested a class of models that combine recurrent neural networks with state space models. Despite the success, the huge model complexity has brought an important challenge to the corresponding inference methods. This paper introduces an structured inference algorithm to efficiently learn such models, including variants where the emission and tr...

متن کامل

Natural-Gradient Stochastic Variational Inference for Non-Conjugate Structured Variational Autoencoder

We propose a new variational inference method which uses recognition models for amortized inference in graphical models that contain deep generative models. Unlike many existing approaches, our method can handle non-conjugacy in both the latent graphical model and the deep generative model, and enables fully amortized inference at test time. Our method is based on an extension of a recently pro...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017